Liquidity Provider Fundamentals: LP Share Valuation (Part 2)

You are currently viewing Liquidity Provider Fundamentals: LP Share Valuation (Part 2)

From Pool Valuation to Individual LP Shares

In our previous discussion, we established how to value an entire liquidity pool. Now we turn to a more practical question: How do we determine the value of an individual liquidity provider’s share?

The fundamental formula for any LP provider Alice is:

\displaystyle \text{Share}(LP)_{\text{Alice}} = \frac{LP_{\text{Alice}}}{\text{Total}(LP)}

Where:

\displaystyle \text{Total}(LP) = \sum LP_i

\displaystyle LP_{\text{Alice}} = \text{Alice's LP token balance}

There are two fundamental scenarios for LP valuation.

Scenario 1: Initial Liquidity Provision

When Alice creates a new trading pair with:

  • \displaystyle x_{\text{init}} of Token X
  • \displaystyle y_{\text{init}} of Token Y

Alice receives:

\displaystyle LP_{init} = \sqrt{x_{init} \times y_{init}}

A very important clarification is that initial quantities of Token X and Token Y will be taken with all decimal places (e.g. DAI token has 18 decimals, eGHST token will have 9 decimals, etc.).

The LP share (initial LP share in this case) is:

\displaystyle \text{Share}(LP)_{\text{init}} = \frac{LP_{\text{init}}}{\text{Total}(LP)}

As the first provider, Alice owns 100% of LP tokens initially. After substitution:

\displaystyle \text{Share}(LP)_{\text{init}} = \frac{\text{Total}(LP)}{\text{Total}(LP)} = 1

To put the value of the initial LP tokens:

\displaystyle \text{Value}(LP)_{\text{init}} = \text{Value}(LP)_{\text{total}} \times \text{Share}(LP)_{\text{init}} = \text{Value}(LP)_{\text{total}} \times 1 = \text{Value}(LP)_{\text{total}}

Where the value of the entire supply of LPs in terms of Token X:

\displaystyle \text{Value}(LP)_{\text{total}} = 2 \times x_{\text{init}}

To finalize:

\displaystyle \text{Value}(LP)_{\text{init}} = \text{Value}(LP)_{\text{total}} = 2 \times x_{\text{init}}

Practical Example

Consider a Pool with the following initial liquidity:

  • QD(DAI)init = 10,000 DAI
  • QD(eGHST)init = 10,000 eGHST

DAI token has 18 decimals (e.g. 1018) and eGHST token has 9 decimals (e.g. 109), while LP token has 18 decimals (e.g. 1018).

Thus, the initial supply of LP tokens is:

\displaystyle LP_{init} = \sqrt{QD(DAI)_{init} \times QD(eGHST)_{init}} = \frac{\sqrt{10^4{\times}10^{18}{\times}10^4{\times}10^9}}{10^{18}} =

\displaystyle \frac{\sqrt{10^{35}}}{10^{18}} = 0.3162278~\text{LP tokens}

The value of the initial supply of LP tokens measured in DAI is:

\displaystyle \text{Value}(LP)_{\text{init}} = 2 \times QD(\text{DAI})_{\text{init}} = 2 \times 10,\!000 = 20,\!000\ \text{DAI}

Scenario 2. Adding Post-Initial Liquidity.

What happens when a new liquidity provider (Bob) wants to join an existing Token X – Token Y liquidity pool after initial liquidity has been deposited?

Assume the pool already has reserves x₁ (Token X) and y₁ (Token Y) due to prior trading activity. Bob must contribute tokens in a ratio that maintains the pool’s current price to avoid disrupting the equilibrium.

Step 1: Determining the Contribution Ratio

Bob must contribute Token X and Token Y in the same ratio as the existing reserves.

Given:

  • Current reserves: x₁ (Token X), y₁ (Token Y)
  • Bob wants to contribute x₂ of Token X.

The required amount of Token Y (y₂) is calculated as:

\displaystyle \frac{y_2}{x_2} = \frac{y_1}{x_1} \implies y_2 = x_2 \times \frac{y_1}{x_1}

Key Insight:

  • The price remains unchanged after adding liquidity because Bob contributes proportionally.

Step 2: Verifying Price Stability

Before Bob’s contribution:

\displaystyle P(Y)_1 = \frac{x_1}{y_1}

After Bob’s contribution:

\displaystyle P(Y)_2 = \frac{x_1 + x_2}{y_1 + y_2}

Substituting y2 from Step 1:

\displaystyle P(Y)_2 = \frac{x_1 + x_2}{y_1 + x_2 \times \frac{y_1}{x_1}} = \frac{x_1 + x_2}{y_1 \times \frac{x_1}{x_1} + x_2 \times \frac{y_1}{x_1}} =

\displaystyle \frac{x_1 + x_2}{\frac{y_1}{x_1} \times (x_1 + x_2)} = \frac{1}{\frac{y_1}{x_1}} = \frac{x_1}{y_1} = P(Y)_1

Conclusion:

  • The price does not change because liquidity is added in the correct ratio.

Step 3: LP Token Allocation

Bob receives LP tokens based on his share of the total liquidity.

The formula for LP tokens issued to Bob (LP₂) is:

\displaystyle LP_2 = \min\left(\frac{x_2}{x_1} \times Total(LP)_1, \frac{y_2}{y_1} \times Total(LP)_1\right)

Since:

\displaystyle \frac{y_2}{x_2} = \frac{y_1}{x_1} \rightarrow \frac{x_2}{x_1} = \frac{y_2}{y_1}

Therefore:

\displaystyle LP_2 = \frac{x_2}{x_1} \times Total(LP)_1 = \frac{y_2}{y_1} \times Total(LP)_1

Both terms are equal, and the min function is used to prevent rounding errors.

Bob’s LP share at time T:

\displaystyle Share(LP)_2 = \frac{LP_2}{Total(LP)_{Time\, T}}

Step 4: Value of Bob’s LP Tokens

The total value of all LP tokens (in terms of Token X) at time T is:

\displaystyle Value(LP)_{total,Time\, T} = 2 \times x_{Time\, T}

Thus, the value of Bob’s LP tokens is:

\displaystyle Value(LP)_2 = Value(LP)_{total,Time\, T} \times Share(LP)_2

After substituting both inputs:

\displaystyle Value(LP)_2 = 2 \times x_{Time\, T} \times \frac{LP_2}{Total(LP)_{Time\, T}}

Practical Example

Current Pool Reserves:

  • QD(DAI) = 100,000 DAI
  • QD(eGHST) = 10,000 eGHST
  • Total(LP) = 0.3162278 LP

Bob’s Contribution to LP:

  • Q(DAI)Bob = 5,000 DAI
  • Required eGHST to the LP:

\displaystyle Q(eGHST)_{Bob} = Q(DAI)_{Bob} \times \frac{QD(eGHST)}{QD(DAI)} = 5,\!000 \times \frac{10,\!000}{100,\!000} = 500\ eGHST

LP Tokens Received by Bob:

\displaystyle LP_{Bob} = \frac{Q(DAI)_{Bob}}{QD(DAI)} \times Total(LP) = \frac{5,\!000}{100,\!000} \times 0.3162278 = 0.0158114\ LP

Updated Pool State:

  • \displaystyle QD(DAI)_{new} = 100,\!000 + 5,\!000 = 105,\!000\ DAI
  • \displaystyle QD(eGHST)_{new} = 10,\!000 + 500 = 10,\!500\ eGHST
  • \displaystyle Total(LP)_{new} = 0.3162278 + 0.0158114 = 0.3320392\ LP

Value of Bob’s LP Tokens (in DAI):

\displaystyle Value(LP)_{Bob} = 2 \times x_{Time\, T} \times \frac{LP_{Bob}}{Total(LP)_{Time\, T}} = 2 \times 105,\!000 \times \frac{0.0158114}{0.3320392} = 10,\!000\ DAI

Interpretation:

Bob’s LP tokens are worth 10,000 DAI, matching his combined contribution (5,000 DAI + 500 eGHST at the pool’s exchange rate).

The total supply of LP tokens remains constant, but their value fluctuates in response to price movements within the eGHST-DAI trading pair.

What is ghostDAO?

ghostDAO is the future of interoperability and governance in web3 by allowing anyone to transfer assets from one chain to another all while being chain and DApp agnostic.

ghostAirdrop | ghostAirdrop Bot | Litepaper | Medium | Telegram | Twitter | Website